
Languages, Frameworks, and Tools
for Developing Flight Software

Rober t L. Bocchino Jr.

Jet Propulsion Laboratory
Califor nia Institute of Technology

© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Introduction

• I work in the Small Scale Flight Software (FSW) Group

• FSW development is challenging

− FSW is complex and concurrent

− It must meet rigorous standards of correctness and perfor mance

• Small-scale FSW has particular challenges

− Compressed budgets and schedules

− Under-specified and rapidly changing requirements

• This talk: Tools that enable FSW development

2
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Introduction

• I work in the Small Scale Flight Software (FSW) Group

• FSW development is challenging

− FSW is complex and concurrent

− It must meet rigorous standards of correctness and perfor mance

• Small-scale FSW has particular challenges

− Compressed budgets and schedules

− Under-specified and rapidly changing requirements

• This talk: Tools that enable FSW development

Developing high-quality software

2
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Introduction

• I work in the Small Scale Flight Software (FSW) Group

• FSW development is challenging

− FSW is complex and concurrent

− It must meet rigorous standards of correctness and perfor mance

• Small-scale FSW has particular challenges

− Compressed budgets and schedules

− Under-specified and rapidly changing requirements

• This talk: Tools that enable FSW development

Developing high-quality software

Meeting tight constraints on budg et and schedule

2
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Topics

• F Prime: A framework for developing small-scale FSW

− Provides a modular architecture based on components and ports

− Provides a complete development ecosystem

• FPP (F Prime Prime): A modeling language for F Prime

• STest: A framework for scenario-based testing

− Raises the level of abstraction in specifying tests

− User describes desired behavior with rules and scenarios

− Framework automatically generates tests

• TNet: A language for specifying task networks

− Provides a flexible way to command spacecraft

− Suppor ts FSW development by generating code

3
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Outline

• F Prime FSW framework

• FPP modeling language

• STest testing framework

• TNet language for autonomy

• Future Wor k

• Conclusion

4
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



The F Prime FSW Framework

• Free and open-source; developed at JPL

• Compr ises several elements

1. A modular architecture based on components and ports

2. A C++ framework providing core capabilities

3. Tools for specifying models and generating code

4. A collection of ready-to use components

5. Tools for unit and integration testing

• Runs on a var iety of platfor ms

https://github.com/nasa/fprime

5
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: Architecture

• Key concepts

− Component: A unit of FSW function (like a C++ class)

− Port: A point of connection between component instances

− Topology: A directed graph of instances and connections

• Component instances

− Communicate only through ports

− Have no compile-time dependencies on other components

• Por t connections

− Are typed and statically specified

− May be synchronous or asynchronous

6
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: Architecture

• Key concepts

− Component: A unit of FSW function (like a C++ class)

− Port: A point of connection between component instances

− Topology: A directed graph of instances and connections

• Component instances

− Communicate only through ports

− Have no compile-time dependencies on other components

• Por t connections

− Are typed and statically specified

− May be synchronous or asynchronous

Provides structure to FSW applications

6
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: Architecture

• Key concepts

− Component: A unit of FSW function (like a C++ class)

− Port: A point of connection between component instances

− Topology: A directed graph of instances and connections

• Component instances

− Communicate only through ports

− Have no compile-time dependencies on other components

• Por t connections

− Are typed and statically specified

− May be synchronous or asynchronous

Provides structure to FSW applications

Enables automatic checking of correctness proper ties

6
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: Architecture

• Key concepts

− Component: A unit of FSW function (like a C++ class)

− Port: A point of connection between component instances

− Topology: A directed graph of instances and connections

• Component instances

− Communicate only through ports

− Have no compile-time dependencies on other components

• Por t connections

− Are typed and statically specified

− May be synchronous or asynchronous

Provides structure to FSW applications

Enables automatic checking of correctness proper ties

Enhances reusability of FSW components

6
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: C++ Framework

input vir tual inputHandler(...) = 0 output

inputHandler = {
...
invokeOutput(...)
...

}

F Prime auto-generates
a C++ base class from
a high-level specification

Developers fill in
handler functions with
application-specific code

7
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: C++ Framework

input vir tual inputHandler(...) = 0 output

inputHandler = {
...
invokeOutput(...)
...

}

F Prime auto-generates
a C++ base class from
a high-level specification

Developers fill in
handler functions with
application-specific code

F Prime auto-generates
a C++ base class from
a high-level specification

Developers fill in
handler functions with
application-specific code

7
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: C++ Framework

input vir tual inputHandler(...) = 0 output

inputHandler = {
...
invokeOutput(...)
...

}

F Prime auto-generates
a C++ base class from
a high-level specification

Developers fill in
handler functions with
application-specific code

F Prime auto-generates
a C++ base class from
a high-level specification

Developers fill in
handler functions with
application-specific code

F Prime auto-generates
a C++ base class from
a high-level specification

Developers fill in
handler functions with
application-specific code

7
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: Modeling

Component 1 Component 2

• F Pr ime developers write high-level models

− Define components and ports

− Specify connections in a topology

− Define flight-ground interface (commands, events)

• F Pr ime tools generate

− Component base classes

− Code for connecting the ports

− Command and event dictionaries

8
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



F Prime: Testing

• Testing is both labor-intensive and critical

• F Pr ime provides robust support for testing

• Unit tests of components

− F Pr ime automatically generates a tester base class

− It is the mirror image of the component base class

− Tests go in a class derived from the tester base

• Integration tests of deployments (executable builds)

− F Pr ime provides a complete ground data system

− It includes a GUI for interactive tests

− It also includes a python API for scripted tests

9
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Experience with F Prime

• We have used F Prime on several space missions

− ISS RapidScat scatterometer (flew)

− ASTERIA CubeSat space telescope (flying now)

− Mars Helicopter (in development)

− Lunar Flashlight CubeSat (in development)

− Near Earth Asteroid (NEA) Scout CubeSat (in development)

• We have used F Prime for research and education

− JPL R&D project on autonomous FSW

− Collaborations with CMU and other universities

• F Pr ime reduces the cost of developing FSW

− Enables sharing and reuse among projects

− Lets developers focus on mission-specific code

10
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



ASTERIA

11
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Mars Helicopter

12
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Outline

• F Pr ime FSW framework

• FPP modeling language

• STest testing framework

• TNet language for autonomy

• Future Wor k

• Conclusion

13
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



FPP (F Prime Prime)

• A modeling language and visualization tool for F Prime

• Intended to replace our current modeling approach

− Plugin for a commercial tool called MagicDraw

− Handwr itten XML

• Goals

− Free and open source

− Simple and easy to use

− Well integrated with the rest of F Prime

• Dev eloped in collaboration with CMU MSE program

• Uses Acme Studio for architecture checking

14
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



FPP: Modeling Por ts

namespace Fw

porttype Cmd {

comment = "Command port"

arg opcode : FwOpcodeType {

comment = "Command opcode"

}

arg seqNum : U32 {

comment = "Command sequence number"

}

arg args : CmdArgBuffer {

pass_by = reference

comment = "Buffer containing arguments"

}

}

15
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



FPP: Modeling Components

namespace Svc

component CmdDispatcher {

kind = active

comment = "A component for dispatching commands"

port cmdOut : Fw.Cmd {

direction = out

number = NumCmdPorts

comment = "Dispatches commands"

}

...

}

16
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



FPP: Modeling Topologies

namespace Ref

instance cmdDisp : Svc.CmdDispatcher {

base_id = 0x100

base_id_window = 0x100

}

instance cmdSeq : Svc.CmdSequencer {

base_id = 0x200

base_id_window = 0x100

}

...

topology CommandResponse {

cmdSeq.cmdResponseOut -> cmdDisp.cmdResponseIn

...

}

17
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



FPP Visualizer

18
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Outline

• F Prime FSW framework

• FPP modeling language

• STest testing framework

• TNet language for autonomy

• Future Wor k

• Conclusion

19
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



The STest Testing Framework

• A C++ framework for writing tests

• Approach

1. The developer uses rules to describe desired system behavior

2. The developer uses rules to write scenarios

3. The framework uses scenarios to generate tests

• Advantages

− Factors tests into small reusable pieces

− Separates system behavior from test construction

− Enables generation of many tests (potentially millions)

20
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



STest: Rules

• A rule R has two par ts:

1. The precondition: When to apply R

2. The action: What to do and what to check when applying R

• Example: Allocating a buffer from a memory manager

− Precondition: A buffer is available and s is a legal buffer size

− Action:

• Request a buffer of size s

• Check that the action succeeded

• Check that the action produced a buffer of size s

• We can write similar rules for

− Successful deallocation

− Error cases

21
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



STest: Scenarios

• A scenar io is a recipe for using rules to construct tests

• Example scenarios

S1. A fixed sequence of rules R1, . . . ,Rn

S2. All valid random sequences of a fixed set of rules {R i }

S3. All stepwise interleavings of a fixed set of scenarios {S i }

• STest provides several operations for constructing scenarios

− Nondeter ministic choice

− Repetition

− Conditional execution

− Inter leaving

• One scenario can automatically generate millions of tests

22
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



STest: Tool Integration

• kontest

− An exper imental tool developed at JPL

− Uses concolic testing to generate test inputs

• Run with input I0 and collect constraints

• Solve constraints to generate inputs I1, . . . , In

• Repeat for I1, . . . , In

− Extends klee; operates on LLVM bitcode

− Integrated with STest for picking test inputs

• Spin

− A widely used explicit-state model checker

− Remembers and systematically explores system states

− Integrated with STest for picking rules to apply

23
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Experience with STest

• We have applied STest and kontest to

− Several F Prime components

− A software simulation for an attitude control system

− The file system for the Curiosity Mars rover

• We found tricky corner-case bugs in

− The Curiosity file system

− The ASTERIA Communication component

• Challenging to find with traditional testing

24
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Outline

• F Prime FSW framework

• FPP modeling language

• STest testing framework

• TNet language for autonomy

• Future Wor k

• Conclusion

25
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Task Networks

• A task network is a way of commanding a spacecraft

• It divides spacecraft activity into tasks consisting of

− Conditions on system state

− Commands to perfor m

− Impacts to timelines (updates to modeled state var iables)

• Example: Taking an image

− Precondition: Imager is on

− Command: Take the image

− Impact: Add one to count of images taken

• Suppor ts on-board autonomous behavior

26
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



The TNet Language

• A statically typed domain-specific language (DSL)

− Uses structural typing

− Suppor ts aggregate values: structures, arrays, ranges, sets

• Goals

1. Provide a convenient way to specify task networ ks

2. Generate task networ ks to submit to an on-board planner

3. Generate C++ code for inclusion in FSW

• C++ code generation includes

− Representations of state data structures

− Code for instantiating templates (tasks with unbound parameters)

27
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



TNet: Status

Language Feature Design Implementation

Types and constants ✓ ✓

States and timelines ✓ ✓

Task definitions

Task templates

Instantiating task templates

Development started in May 2018

28
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



TNet: Types and Constants

module GNC {

module Position {

@ The type of a position

type t = { x : F64, y : F64, z : F64 }

@ Componentwise minimum position value

constant min = { x = -1, y = -1, z = -1 } : t

@ Componentwise maximum position value

constant max = { x = 1, y = 1, z = 1 } : t

}

}

29
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



TNet: Enumerations

module GNC {

@ Spacecraft body vector

enum BodyVector {

@ The solar panel

SOLAR_PANEL = 1

@ The camera boresight

CAMERA_BORESIGHT = 2

...

}

}

30
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



TNet: State

module GNC {

module State {

@ The type of a GNC state value

type t = {

@ Position

position : Position.t

@ Body vector

bodyVector : BodyVector

...

}

@ The GNC state value

state s : t = {

position = { x = 0, y = 0, z = 0 }

bodyVector = BodyVector.SOLAR_PANEL

...

}

}

}

31
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



TNet: Timelines

module GNC {

module State {

@ The position timeline

timeline s.position in Position.min..Position.max

@ The body vector timeline

timeline s.bodyVector

}

}

32
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Outline

• F Prime FSW framework

• FPP modeling language

• STest testing framework

• TNet language for autonomy

• Future Work

• Conclusion

33
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Future Work

• FPP

− Current tools are alpha versions

− Make the tools more robust and feature complete

− Add more analysis capabilities

• STest

− Use Promela (Spin modeling language) to write scenarios

− Develop a general language for describing scenarios

• TNet

− Continue to develop the language

− Integrate with extended ASTERIA mission

− Integrate with Autonomy research

34
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Outline

• F Prime FSW framework

• FPP modeling language

• STest testing framework

• TNet language for autonomy

• Future Wor k

• Conclusion

35
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged



Conclusion

• FSW development is challenging

• We are developing several tools that can help

− F Prime FSW framework

− FPP modeling language

− STest testing framework

− TNet language for autonomy

• We have sev eral directions for future wor k

36
© 2018 Califor nia Institute of Technology
Government sponsorship acknowledged


